Courses of Study 2024-2025 
    
    May 17, 2025  
Courses of Study 2024-2025
Add to Favorites (opens a new window)

CS 6789 - Foundations of Reinforcement Learning


     
Spring. 4 credits. Student option grading.

Prerequisite: CS 3780 /CS 5780  or equivalent, BTRY 3080  or ECON 3130  or MATH 4710  and ORIE 3300  and MATH 2940 . For undergraduates: permission of instructor with minimum grade A in CS 3780 .

W. Sun.

State-of-art intelligent systems often need the ability to make sequential decisions in an unknown, uncertain, possibly hostile environment, by actively interacting with the environment to collect relevant data. Reinforcement Learning is a general framework that can capture the interactive learning setting. This graduate level course focuses on theoretical and algorithmic foundations of Reinforcement Learning. The topics of the course will include: basics of Markov Decision Process (MDP); Sample efficient learning in discrete MDPs; Sample efficient learning in large-scale MDPs; Off-policy policy optimization; Policy gradient methods; Imitation learning & Learning from demonstrations; Contextual Bandits. Throughout the course, we will go over algorithms, prove performance guarantees, and also discuss relevant applications. This is an advanced and theory-heavy course: there is no programming assignment and students are required to work on a theory-focused course project.



Add to Favorites (opens a new window)